POLYMERISATION

General A process in which small molecules called monomers join together into large molecules consisting of repeating units.

There are two basic types
ADDITION \& CONDENSATION

ADDITION

POLYMERS • all the atoms in the monomer are used to form the polymer

- occurs with alkenes
- mechanism can be free radical or ionic

Examples
poly(ethene)
poly(phenylethene)
poly(chloroethene)
poly(tetrafluoroethene)
poly(ethenyl ethanoate)
'PVA'
pory(cnioroenene)

Formula of monomer Formula of polymer
Use(s)

Preparation Many are prepared by a free radical process involving high pressure, high temperature and a catalyst. The catalyst is usually a substance (organic peroxide) which readily breaks up to form radicals which, in turn, initiate a chain reaction.

Another famous type of catalyst is a Ziegler-Natta catalyst (named after the scientists who developed it). Such catalysts are based on the compound TiCl_{4}.

Properties

Physical Can be varied by changing the reaction conditions (pressure, temperature etc).
Chemical Are based on the functional groups within their structure.
eg poly(ethene) is typical; it is fairly inert as it is basically a very large alkane. This means it is resistant to chemical attack and non-biodegradable.

CONDENSATION

POLYMERS • monomers join up the with expulsion of small molecules

- not all the original atoms are present in the polymer
- examples include polyamides nylon
polyesters terylene
peptides
starch
- reactions between
diprotic carboxylic acids and diols diprotic carboxylic acids and diamines amino acids

POLYESTERS

Terylene
Reagents
terephthalic acid
$\mathrm{HOOC}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{COOH}$
ethane-1,2-diol $\quad \mathbf{H O C H}_{2} \mathbf{C H}_{2} \mathbf{O H}$

Reaction Esterification

Eliminated water
Product poly(ethylene terephthalate) 'Terylene', 'Dacron'
Equation $\quad n \mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}+n \mathrm{HOOC}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{COOH} \rightarrow$

$$
-\left[-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OOC}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{CO}-\right]_{n}-+n \mathrm{H}_{2} \mathrm{O}
$$

Repeat unit - $\left[-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OOC}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{CO}-\right]_{\mathrm{n}}$ -
Structure

Properties • contain an ester link

- can be broken down by hydrolysis
- the C-O bond breaks
- behaves as an ester

- biodegradable

Q. 1 Draw structures for the organic product(s) formed when poly(lactic acid) is treated with the following reagents. [Hint: see page 5 of these notes]
- $\mathrm{HCl}(\mathrm{aq})$
- $\mathrm{NaOH}(a q)$

What name is given to this type of reaction?

POLYAMIDES

Nylon-6,6 Reagents

Mechanism Addition-elimination
Eliminated
Product

Equation

Repeat unit

Structure

Properties

- contain a peptide (or amide) link
- can be broken down by hydrolysis
- the C-N bond breaks
- behave as amides

- biodegradable
- can be spun into fibres for strength

Uses

Kevlar
Reagents
benzene-1,4-diamine
benzene-1,4-dicarboxylic acid

Product Kevlar

Structure

Peptides - formed by joining amino acids together

- are examples of polyamides
- amino acids have two main functional groups

-COOH	carboxylic acid
$-\mathrm{NH}_{2}$	amine

- amino acids can join together using a peptide link
- dipeptide two amino acids joined together tripeptide three amino acids joined
 polypeptide many amino acids joined together
- a protein is a polypeptide with a large relative molecular mass (>10000)
- peptides/proteins are broken down into the original amino acids by hydrolysis
 $\mathrm{HOOCCH}\left(\mathrm{CH}_{3}\right) \mathrm{NH}_{2}$

The acid and amine groups remain as they are

Acid
Hydrolysis

The amine groups are protonated and the acid groups remain as they are

Base (alkaline)
Hydrolysis

$$
\mathrm{Na}^{+}{ }^{-} \mathrm{OOCCH}\left(\mathrm{CH}_{3}\right) \mathrm{NH}_{2}
$$

The acid groups become sodium salts and the amine groups remain as they are
Q. 2 Look up the structures of alanine and glycine. Draw the structure of the dipeptide formed when they react together.
Q. 3 Look at the structure of the following dipeptide.

How many different amino acids formed the dipeptide? Draw their structure(s).

Give the formulae of the organic products formed when the dipeptide is hydrolysed using...
a) $\mathrm{NaOH}(a q)$
b) $\mathrm{HCl}(\mathrm{aq})$

POLYMER FORMATION - A SUMMARY

	ADDITION	CONDENSATION
Monomers	ALKENES $\mathrm{C}=\mathrm{C}$ bond	ALCOHOLS + ACIDS AMINES + ACIDS AMINO ACIDS AMINES + ACYL CHLORIDES
Process	All the atoms in the original monomers end up in the polymer	Monomers join up with the expulsion of a small molecule (e.g. water)
Bonding	ALKANE LINK	ESTER LINK AMIDE (PEPTIDE) LINK
Reactivity	UNREACTIVE - NON-POLAR Resistant to hydrolysis	REACTIVE - POLAR BONDS Hydrolysed by acids and alkalis
Uses	Packaging Insulation	Clothing Ropes
Examples	poly(ethene) poly(propene) poly(phenylethene) poly(chloroethene)	

